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Введение

(Д.Е. Меньшов, 1916) Существует тригонометрический ряд сходящийся
к нулю в (0, 2π) за исключением совершенного множества меры нуль и
содержащий бесконечно много ненулевых коэффициентов.

Конструкция Меньшова: На k-ом шаге построения совершенного мно-
жества в каждом из 2k−1 оставшихся отрезков удаляем по концентри-
ческому интервалу длиной в 1

k+1 длины этого отрезка.

Симметричное совершенное множество с переменным отношением
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Определения

Нуль-рядом по некоторой системе функций называется нетривиальный
ряд, который почти всюду сходится к 0.
Множество A называется M -множеством для рядов по некоторой си-
стеме функций, если существует ряд по этой системе, не все коэффи-
циенты которого нулевые, сходящийся к нулю вне множества A.
Система функций Уолша определяется через систему функций Радема-
хера Rk(x) = (−1)m, x ∈ [ m

2k+1 ,
m+1
2k+1 ), (k = 0, 1 . . .) равенствами

W0(x) = 1, Wn(x) =
H(n)∏
k=0

Rnk
k (x), n =

∑H(n)
k=0 nk2

k, x ∈ [0, 1).
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Введение

Существование M -множеств нулевой меры для системы Уолша доказа-
но в работах А.A. Шнейдера, J.E. Coury, F. Schipp.

Первая конструкция M -множества нулевой меры для системы Уолша
предложена В.А. Скворцовым (M -множество определяется индуктивно как
пересечение вложенной последовательности множеств, где каждое множество
является линией уровня 1 некоторого полинома Уолша.)

Пусть h(t) – определенная на [0,+∞) неотрицательная неубывающая функ-
ция, для которой h(0+) = h(0) = 0. Тогда будем говорить, что h-мера некото-
рого множества E равна нулю, или µhE = 0, если для любого ε > 0 найдется
такая система отрезков {vs}, что E ⊂

⋃
vs и

∑
s h(|vs|) < ε.

(В.А. Скворцов, 1977) Для любой функции h(t) существует совершенное
множество E ⊂ [0, 1], у которого µhE = 0 и которое является M -
множеством для системы Уолша.

Для тригонометрической системы аналогичная теорема была доказана
О.С. Ивашовым-Мусатовым, 1968.
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Введение

(Г.Г. Геворкян, 1988) Пусть εn ↓ 0 и
∑∞

n=0 ε
2
n = +∞. Тогда существует

множество E ⊂ [0, 1] с µE = 0 такое что:
1. Существует ряд

∑∞
n=0 anWn(t) с коэффициентами |an| ≤ εn, который

сходится к нулю всюду вне E и
∑

|an| > 0.
2. Если |bn| = o(εn) и ряд

∑∞
n=0 bnWn(t) сходится к нулю всюду вне E,

то bn = 0 для всех n.

В этой же работе Г.Г. Геворкяном получена похожая теорема для три-
гонометрических рядов.
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Кратные ряды. Виды сходимостей.

SN(g) :=
∑

n<N

anWn(g), N ∈ Nd — прямоугольные частичные суммы

Сходимость по прямоугольникам:
limSN(g) = S при min{N1, . . . , Nd} → ∞

Сходимость по кубам:
limN→∞ SN ·1(g) = S

λ-сходимость (λ > 1):
limSN(g) = S при min{N1, . . . , Nd} → ∞ и max

j,k
N j/Nk ≤ λ

Повторная сходимость:∑
nj1∈N0

(∑
nj2∈N0

(
. . .

(∑
njd∈N0

anWn(g)

)))
= S
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Как легко получить многомерные нуль-ряды?

∑
n
anϕn(x1) и

∑
m
bmϕm(x2) — одномерные нуль-ряды,

E1 и E2 — соответствующие M -множества.
Тогда двойной ряд

∑
n,m

anbmϕn(x1)ϕm(x2) является нуль-рядом по си-

стеме {ϕn(x1)ϕm(x2)} при сходимости по прямоугольникам или кубам,
а (E1 × [0, 1]) ∪ ([0, 1]× E2) — M -множество.

(С.Ф. Лукомский, 1989) Пусть E ⊂ [0, 1)d−1, d ≥ 2. Множество E×[0, 1)
есть M -множество для d-кратных рядов Уолша (для случая сходимости
по прямоугольникам) тогда и только тогда, когда E есть M -множество
для (d− 1)-кратных рядов Уолша.
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Как построить "по существу" многомерные
M -множества нулевой меры?

Н. Н. Холщевникова в работе 2013 года отмечает, что построенные та-
ким образом M -множества меры нуль всегда будут иметь проекцию
хотя бы на одну из координатных осей меры 1.

Вопрос, Н. Н. Холщевникова: о построении M -множества содержаще-
гося, например, в квадрате 0 ≤ x1 ≤ 1/2, 0 ≤ x2 ≤ 1/2.

Вопрос: о построенииM -множества такого, что любое сечение k-мерной
плоскостью, параллельной координатной, имеет k-мерную меру нуль, и
при этом дополнение этого множества не является декартовым произ-
ведением.

Пусть i = (i1, . . . , id). Через ∆
(k)
i =

[
i1−1
2k

, i1
2k

)
× . . .×

[
id−1
2k

, id
2k

)
обозна-

чим двоичный куб ранга k.
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Конструкция M -множества

Пусть (ms) : ms+1 ≥ 2·(2ms+1). Множество F = ∩∞
s=1Fs. Каждый слой

Fs— объединение "графиков" d-мерных функций Уолша Wn, 2ms · 1 ≤
n ≤ 2ms+1 · 1− 1, сжатых до определенного куба ранга ms: кубу ∆

(ms)
i

соответствует функция Уолша с номером 2ms · 1+ i.

Множество F является непустым
совершенным множеством нулевой меры.

Теорема
Множество F является M -множеством для
системы Уолша при сходимости по
прямоугольникам и повторной сходимости.

Всякая непустая порция множества F (т.е.
F ∩G, где G —открыто) тоже является
M -множеством.
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О коэффициентах нуль-ряда

Теорема
Существует нуль-ряд

∑∞
n=0 τnWn,

который "реализует" M -множество
F такой, что его коэффициенты
сосредоточены около главной
диагонали. Ненулевые
коэффициенты есть только среди
коэффициентов с номерами
22ms · 1 ≤ n ≤ 22ms+1 · 1− 1 и они
по модулю равны τn = 2s

2dms+1 .

Теорема
Если

∑∞
n=0 ψnWn сходится к нулю по прямоугольникам или кубам вне

множества F и ψn = o(τn) при maxnj → ∞, то все ψn = 0.
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О перестановке порций Fs ∩∆
(ms)
m в слое

Теорема
Множество F будет оставаться M -множеством если в каждом слое
переставлять порции Fs ∩∆

(ms)
m вдоль координатных гиперплоскостей

(подгруппа (S2ms )d в симметрической группе S2dms перестановок всех кубов
ранга ms).
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О U - и M -множествах для кратных рядов

Известно и нетрудно получить, что

Любое множество положительной меры является M -множеством для
одномерной системы Уолша, для тригонометрической системы.

Открытый вопрос (J. M. Ash, C. Freiling, D. Rinne, 1993, H. H. Холщев-
никова, 2002):

Всякое ли множество положительной меры является M -множеством
для кратной системы Уолша, для кратной тригонометрической
сисетмы?

U -множества — множества, которые не являются M -множествами.
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О U - и M -множествах для кратных рядов

(M.Г. Плотников, 2010) Любое не более чем счётное множество являет-
ся множеством единственности для системы Уолша при сходимости по
кубам (по прямоугольникам — В.А. Скворцов, 1973).

(С.Ф. Лукомский, 1992) Классы U -множеств при сходимости по прямо-
угольникам и по кубам не совпадают.

(Ш.Т. Тетунашвили, 1991) Любое не более чем счётное множество яв-
ляется множеством единственности для тригонометрической системы
при сходимости по прямоугольникам (по кубам — неизвестно).

Открытый вопрос: Является ли пустое множество U -множеством для
тригонометрической системы при сходимости по кубам?

(Гипотеза, J.M. Ash, G. Wang, 2007) Ответ отрицательный.
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О совершенных U -множествах

(К. Йонеда, 1982) Множества Дирихле
(∃ {nj}∞j=1 : F = {t : Wnj

(t) = 1, ∀j}) явля-
ются U -множествами для рядов Уолша.
(М.Г. Плотников, 2010) Множества типа Дирихле
(∃ {kj}∞j=1 : F = {t : Rkj ·1(t) = 1, ∀j}) являются
U -множествами для d-кратных рядов Уолша при
сходимости по кубам.

Пусть слой Fs— объединение "графиков" одной
и той же d-мерной функции Уолша с номером та-
ким, что 2ms · 1 ≤ n ≤ 2ms+1 · 1 − 1, сжатых до
квадратов ранга ms.

Теорема
Множество F = ∩∞

s=1Fs является U -множеством
при λ-сходимости при некотором λ ∈ [1, 2], а в
некоторых случаях даже по кубам (если
n = (2ms + i) · 1).
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О НЕСУММИРУЕМОСТИ ПОЧТИ ВСЮДУ
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Введение

Понятие орторекурсивного разложения было введено в 1999 г. Лукашенко
Т.П., далее был доказан ряд свойств ОРР, но вопрос о суммируемости в
терминах ОРР ранее не затрагивался.

Было доказано, что множители Вейля λk со свойством
∞∑
k=1

1
λk

< ∞

обеспечивают сходимость почти всюду орторекурсивного разложения
функции, которое не сходятся к ней по норме.
Результат перенесен на методы суммирования, которые постоянную с
некоторого номера последовательность суммируют к ее пределу.



Понятие орторекурсивного разложения

Пусть H — гильбертово пространство над полем R или C, а {ek} — конечная или счетная
система нормированных элементов H, последовательно занумерованная натуральными числами.

Определение
Орторекурсивное разложение (ОРР) элемента f ∈ H по
последовательности элементов {ek} осуществляется следующим образом:
1) положим r0 = f ;
2) если задан остаток приближения rn−1 ∈ H , n ∈ N, и элемент en, то
полагаем

f̂n = (rn−1, en); rn = rn−1 − f̂nen. (1)



Понятие орторекурсивного разложения

f̂n = (rn−1, en); rn = rn−1 − f̂nen.

Назовем f̂k орторекурсивными коэффициентами Фурье элемента f ∈ H по
системе {ek} ,
а ряд σ(f ) =

∑
k

f̂kek назовем орторекурсивным рядом Фурье элемента

f ∈ H по системе {ek},
а сумму Sn(f ) =

∑
k⩽n

f̂kek - n-частичной суммой орторекурсивного ряда

Фурье.



Свойства ОРР
Для остатка верно: rn(f ) = f −

∑
k⩽n

f̂kek .

Тогда для ортонормированной системы функций {ek} орторекурсивные
коэффициенты Фурье являются обычными коэффициентами Фурье, а
орторекурсивный ряд Фурье - обычным рядом Фурье.
Из (1) следует равенство Пифагора

||rn−1||2 = ||rn||2 + |f̂n|2 (2)

Из равенств (1) и (2) следует, что

f = r0 =
n∑

k=1

f̂kek + rn и ||f ||2 = ||r0||2 =
n∑

k=1

|f̂k |2 + ||rn||2. (3)



Свойства ОРР

Из (3) следует:

• аналог неравенства Бесселя ||f ||2 ⩾
∑
k

|f̂k |2,

• f =
∑
k

|f̂k |2 ⇔ выполняется аналог равенства Парсеваля

||f ||2 =
∑
k

|f̂k |2,

• ||f || = ||r0|| ⩾ ||r1|| ⩾ ||r2|| ⩾ ||r3|| ⩾ ||r4|| ⩾ ...



Теорема 1
Пусть f - единичный элемент (||f || = 1) сепарабельного гильбертова пространства H (над полем

R или C), а αk > 0, k ∈ N, - такая числовая последовательность, что
∞∑
k=1

αk = +∞, а

∞∑
k=1

α2
k < ν, 0 < ν ⩽

3
4
. Тогда найдется такая нормированная система {ek}∞k=1 в H, что

орторекурсивное разложение элемента f по ней
n∑

k=1

f̂kek + rn обладает следующими свойствами:

|f̂k | < αk ,
1
2
< ||rn|| < 1, ∀k, n ∈ N (4)

и нормированная последовательность остатков
rn

||rn||
всюду плотна на единичной сфере

S(0) = {x ∈ H : ||x || = 1}.



О расходимости почти всюду ОРР

Следствие
Орторекурсивное разложение элемента f из теоремы 1 не сходится в H и
его ортогональная проекция (проекция всех его членов) на любое
невырожденное подпространство H не сходится в этом подпространстве.



О расходимости почти всюду ОРР

Теорема 2
Рассмотрим сепарабельное пространство Лебега L2(Ω) и λk - такую строго положительную

последовательность, что все λk ⩾ 1 и
∞∑
k=1

1
λk

= ∞, тогда для любой функции

f (x) ∈ L2(Ω), ∥f (x)∥ > 0, найдется такая нормированная последовательность функций
{ek(x)}∞k=1, что орторекурсивный ряд f (x) по системе {ek(x)}∞k=1 не сходится по норме
пространства и не сходится поточечно почти всюду на Ω, при этом

∞∑
k=1

λk

∣∣∣f̂k ∣∣∣2 < ∞. (5)



Матричные методы суммирования

Определение

Пусть дана последовательность {σm,m = 1, 2, ...}, σm =
∞∑
k=1

cm,kSk . Тогда σm

будем называть средними ОРР матричного суммирования T = (cm,n).
Для метода выполняется:

•
∞∑
n=1

c(m,n) −→ 1 при m → ∞;

• ∀m c(m,n) −→ 0 при n → ∞.



О несуммируемости почти всюду ОРР
Теорема 3
Пусть T = (cm,n) — матричный метод суммирования сформулированного выше типа, функция f ,
∥f ∥ = 1, — элемент сепарабельного гильбертова пространства H (над полем R или C), а αk > 0,

k ∈ N, — такая неубывающая числовая последовательность, что
∞∑
k=1

αk = +∞, а
∞∑
k=1

α2
k < ν,

0 < ν ⩽
3
4
. Тогда найдется такая нормированная система {ek}∞k=1 в H, что орторекурсивное

разложение элемента f по ней
n∑

k=1

f̂kek + rn обладает следующими свойствами:

если kj подпоследовательность, содержащая все номера с f̂k ̸= 0, то

|f̂kj | < αj , j ∈ N,

при этом для всех остатков выполнено:

1
2
< ∥rn∥ < 1, n ∈ N.



О несуммируемости почти всюду ОРР
Теорема 3

Также существует возрастающая последовательность натуральных чисел nj , что σnj , средние
ОРР вышеуказанного матричного метода суммирования, таковы, что

1
2
< ∥f − σnj ∥ ⩽ 1

и нормированная последовательность
f − σnj

∥f − σnj ∥
всюду плотна на единичной сфере

S(0) = {x ∈ H : ∥x∥ = 1}.



О несуммируемости почти всюду ОРР

Следствие
Орторекурсивное разложение элемента f из теоремы 3 не суммируется в H
вышеуказанным методом суммирования и его ортогональные проекции на
любые невырожденные подпространства H не суммируются данным
методом в этих подпространствах.



О несуммируемости почти всюду ОРР
Следствия из теоремы 3

Теорема 4
Рассмотрим сепарабельное пространство Лебега L2(Ω) и λk — такую неубывающую строго

положительную последовательность, что все λk ⩾ 1 и
∞∑
k=1

1
λk

= ∞. Тогда для любой функции

f (x) ∈ L2(Ω), ∥f (x)∥ > 0, и любого метода суммирования указанного типа, найдется такая
нормированная последовательность функций {ek(x)}∞k=1, что орторекурсивный ряд f (x) по
системе {ek(x)}∞k=1 не суммируется данным методом суммирования по норме пространства и не
суммируется поточечно почти всюду на Ω, при этом

∞∑
k=1

|f̂nk |
2 · λk < ∞,

где f̂nk — подпоследовательность всех отличных от нуля коэффициентов разложения.



О несуммируемости почти всюду ОРР
Следствия из теоремы 3

Теорема 5
Рассмотрим сепарабельное пространство Лебега L2(Ω) и λk — такую строго положительную

последовательность, что все λk ⩾ 1 и
∞∑
k=1

1
λk

= ∞, тогда для любой функции f (x) ∈ L2(Ω),

∥f (x)∥ > 0, и любого метода суммирования указанного выше типа, найдется такая
нормированная последовательность функций {ek(x)}∞k=1, что орторекурсивный ряд f (x) по
системе {ek(x)}∞k=1 не суммируется данным методом суммирования по норме пространства и не
суммируется поточечно почти всюду на Ω, при этом

∞∑
k=1

|f̂k |2 · λk < ∞. (6)



Выводы

Полученные результаты доказывают, что без предположений о сходимости
орторекурсивного разложения (в каком-либо смысле) невозможно получить
результаты о сходимости или суммируемости ОРР. Сходимость
орторекурсивного разложения к разлагаемому элементу естественна и
выполняется для целого ряда систем, представляющих интерес с точки
зрения теории и приложений.
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B — совокупность голоморфных отображений единичного круга D в себя.

Если f, g ∈ B, то f ◦ g ∈ B; в частности, f1 = f ∈ B ⇒ fn = f ◦ fn−1 ∈ B.

Теорема Данжуа–Вольфа
Для любой f ∈ B отличной от дробно-линейного преобразования круга D на
себя существует единственная точка q ∈ D такая, что fn(z) → q локально
равномерно в D при n → ∞.

Точка Данжуа–Вольфа q функции f является притягивающей неподвижной
точкой. Остальные неподвижные точки (если они есть) лежат на T и являются
отталкивающими.

Теорема Жюлиа–Каратеодори
Пусть f ∈ B, f(a) = a, a ∈ T. Тогда

f ′(a) := ∠ lim
z→a

f(z)− a

z − a
= sup

z∈D

|a− f(z)|2

1− |f(z)|2
1− |z|2

|a− z|2 .
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✐ C.C. Cowen, Ch. Pommerenke, “Inequalities for the angular derivative of an
analytic function in the unit disk”, J. London Math. Soc., 26:2 (1982), 271–289.

Пусть f ∈ B, f(q) = q, f(a1) = a1, . . . , f(an) = an.
1 Если q ∈ D, то∣∣∣∣∣f ′(q)−

∑n
k=1

1
f ′(ak)−1

1 +
∑n

k=1
1

f ′(ak)−1

∣∣∣∣∣ ⩽ 1

1 +
∑n

k=1
1

f ′(ak)−1

.

2 Если q ∈ T, то

f ′(q) ⩾

((
n∑

k=1

1

f ′(ak)− 1

)−1

+ 1

)−1

.

Теорема Жюлиа–Каратеодори Пусть f ∈ B, f(a) = 1. Тогда для любого
z ∈ D

a

f ′(a)

1− |z|2

|a− z|2 ⩽
1− |f(z)|2

|1− f(z)|2 .

Теорема Кавена–Поммеренке
Пусть f ∈ B, f(a1) = . . . = f(an) = 1. Тогда для любого z ∈ D

n∑
k=1

ak

f ′(ak)

1− |z|2

|ak − z|2 ⩽
1− |f(z)|2

|1− f(z)|2 .
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Лемма
Пусть f ∈ B, f(a) = a и f ′(a) = α > 1. Тогда функция

g(z) =
f(z) +

(
f(z)− z

)
1

α−1
a

a−z

1 +
(
f(z)− z

)
1

α−1
1

a−z

удовлетворяет неравенству
|g(z)| ⩽ 1 (1)

для всех z ∈ D. Если хотя бы при одном z ∈ D в (1) достигается равенство, то

fq(z) =
q + z 1

α−1
a−q
a−z

1 + 1
α−1

a−q
a−z

, где q ∈ T \ {a}.

При этом равенство в (1) достигается при всех z ∈ D.
Если, в дополнение, f(b) = b, то g(b) = b, причем

g′(b) = f ′(b) +
f ′(b)− 1

α− 1
.

Re

(
a+ f(z)

a− f(z)
− 1

f ′(a)

a+ z

a− z

)
⩾ 0; eiφ

h(z)− u

h(z) + u
∈ B, где Reu > 0.
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Теорема 1
Пусть f ∈ B, f(ak) = ak и f ′(ak) = αk > 1, k = 1, . . . , n. Тогда функция

g(z) =
f(z) +

(
f(z)− z

)∑n
k=1

1
αk−1

ak

ak−z

1 +
(
f(z)− z

)∑n
k=1

1
αk−1

1
ak−z

удовлетворяет неравенству

|g(z)| ⩽ 1 (2)

для всех z ∈ D. Если хотя бы при одном z ∈ D в (2) достигается равен-
ство, то

fq(z) =
q + z

∑n
k=1

1
αk−1

ak−q
ak−z

1 +
∑n

k=1
1

αk−1
ak−q
ak−z

, где q ∈ T \ {a1, . . . , an}.

При этом равенство в (2) достигается при всех z ∈ D.
Если, в дополнение, f(b) = b, то g(b) = b, причем

g′(b) = f ′(b) +
(
f ′(b)− 1

) n∑
k=1

1

αk − 1
.
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Теорема 1′

Пусть f ∈ B, f(ak) = ak и f ′(ak) = αk > 1, k = 1, . . . , n. Тогда для любого
z ∈ D

n∑
k=1

1

αk − 1

|ak − f(z)|2

|ak − z|2
⩽

(
1 +

n∑
k=1

1

αk − 1

)
1− |f(z)|2

1− |z|2

− |z − f(z)|2

2

n∑
k=1

n∑
j=1

1

(αk − 1)(αj − 1)

|ak − aj |2

|ak − z|2|aj − z|2
.

При n = 1 получаем теорему Жюлиа–Каратеодори

|a− f(z)|2

|a− z|2
⩽ α

1− |f(z)|2

1− |z|2
.
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Теорема 1 при дополнительном (избыточном) условии f(0) = 0
эквивалентна теореме Кавена–Поммеренке.

Пусть f ∈ B, f(a1) = . . . = f(an) = 1.
Рассмотрим функцию p(z) = zf(z). Тогда p ∈ B, p(a1) = a1, . . . , p(an) = an
и p(0) = 0.
По теореме 1 функция

g(z) =
p(z) +

(
p(z)− z

)∑n
k=1

1
αk−1

ak

ak−z

1 +
(
p(z)− z

)∑n
k=1

1
αk−1

1
ak−z

принадлежит классу B и g(0) = 0. Следовательно,

g(z)

z
=

f(z) +
(
f(z)− 1

)∑n
k=1

ak

f ′(ak)
ak

ak−z

1 +
(
f(z)− 1

)∑n
k=1

ak

f ′(ak)
z

ak−z

∈ B.

Re
1 + g(z)

z

1− g(z)
z

=

(
1− |f(z)|2

|1− f(z)|2
−

n∑
k=1

ak
f ′(ak)

1− |z|2

|ak − z|2

)(
1 +

n∑
k=1

ak
f ′(ak)

)−1

⩾ 0.
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Следствия из теоремы 1

Пусть f ∈ B, f(ak) = ak и f ′(ak) = αk > 1, k = 1, . . . , n.

найдена точная область значений функции f в произвольной точке
единичного круга;
получено точное неравенство для производной f ′ в произвольной точ-
ке единичного круга;
найдены точные оценки для начальных тейлоровских коэффициентов.

✐ О.С. Кудрявцева, “Обобщение теоремы Жюлиа–Каратеодори на случай
нескольких граничных неподвижных точек, Докл. РАН. Матем., информ.,
проц. упр, (2025).
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Периодические режимы в волновых колебаниях сетки
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Резольвентный подход в методе Фурье

u(x, t) = u0(x, t) + u1(x, t),

u0(x, t) = −
1

2πi




∫

|λ|=r

+
∑

n≥n0

∫

γn




R0
λg

λ− µ0

cos ρtdλ,

u1(x, t) = −
1

2πi




∫

|λ|=r

+
∑

n≥n0

∫

γn



Rλg −R0

λg

λ− µ0

cos ρtdλ,

g = (L− µ0E)ϕ
—————–
Бурлуцкая М.Ш., Хромов А.П. // ДАН. 2014.
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Задача на графе (сетка из струн одинаковой длины)

∂2uj(x, t)

∂t2
=
∂2uj(x, t)

∂x2
− qj(x)uj(x, t) + fj(x, t), (1)

(j = 1, 2), (x, t) ∈ Q = [0, 1]× ∈ [0,+∞),

u1(0, t) = u1(1, t) = u2(0, t) = u2(1, t), (2)

u′1x(0, t)− u′1x(1, t) + u′2x(0, t)− u′2x(1, t) = 0, (3)

u1(x, 0) = ϕ1(x), u2(x, 0) = ϕ2(x),
u′1t(x, 0) = ψ1(x), u′2t(x, 0) = ψ1(x)

(4)
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Формула для решения

u(x, t) = −
1

2πi




∫

|λ|=r

+
∑

n≥n0

∫

γn




[
(Rλϕ) cos ρt+

+Rλ(ψ)
sin ρt

ρ
+

t∫

0

Rλ(f(·, τ))
sin ρ(t− τ)

ρ
dτ

]
dλ, (5)

Rλ – резольвента оператора:

Ly = (−y′′1 (x) + q1(x)y1(x),−y′′2 (x) + q2(x)y2(x))
T
,

y1(0) = y1(1) = y2(0) = y2(1), y
′

1(0)− y′1(1) + y′2(0)− y′2(1) = 0,

λ = ρ2, Reρ ≥ 0, r > 0 и достаточно велико,
γn есть образ в λ – плоскости окружностей γ̃n={ρ | |ρ− nπ| = δ},
δ > 0 достаточно мало и фиксировано,
Rλ(f(·, τ)) означает, что Rλ применяется к f(x, τ) по x.
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Задача (А): fj(x, t) ≡ 0, ψj(x) ≡ 0

∂2uj(x, t)

∂t2
=
∂2uj(x, t)

∂x2
− qj(x)uj(x, t),

u1(0, t) = u1(1, t) = u2(0, t) = u2(1, t),

u′1x(0, t)− u′1x(1, t) + u′2x(0, t)− u′2x(1, t) = 0,

u1(x, 0) = ϕ1(x), u2(x, 0) = ϕ2(x), u′1t(x, 0) = u′2t(x, 0) = 0

Если qj(x) ≡ 0, то u(x, t) =
1

2

(
F̃ (x+ t) + F̃ (x− t)

)
,

где F̃ (x) = ϕ(x) при x ∈ [0, 1],

F̃1(−x) = 1

2
[F̃1(1− x) + F̃2(1− x)− F̃1(x) + F̃2(x)],

F̃2(−x) = 1

2
[F̃1(1− x) + F̃2(1− x) + F̃1(x)− F̃2(x)],

F̃1(1 + x) = 1

2
[F̃1(x)− F̃1(1− x) + F̃2(x) + F̃2(1− x)],

F̃2(1 + x) = 1

2
[F̃1(x) + F̃1(1− x) + F̃2(x)− F̃2(1− x)].

(Π)
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Задача (B): qj(x) ≡ 0, ϕj(x) ≡ 0, ψj(x) ≡ 0

∂2uj(x, t)

∂t2
=
∂2uj(x, t)

∂x2
+ fj(x, t),

u1(0, t) = u1(1, t) = u2(0, t) = u2(1, t),

u′1x(0, t)− u′1x(1, t) + u′2x(0, t)− u′2x(1, t) = 0,

u1(x, 0) = u2(x, 0) = 0, u′1t(x, 0) = u′2t(x, 0) = 0

Если fj(x, t) непрерывно дифференцируемы по x и t и удовлетворяют
условиям (2)-(3),

u(x, t) =
1

2

t∫

0

dτ

x+t−τ∫

x−t+τ

F̃ (η, τ) dη,

F̃ (x, t) = f(x, t) = (f1(x, t), f2(x, t))
T при x ∈ [0, 1], и продолжается на всю

ось с помощью соотношений (Π).
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Задача (А): преобразование формального решения

u(x, t) = −
1

2πi




∫

|λ|=r

+
∑

n≥n0

∫

γn


 (Rλϕ) cos ρt dλ, (6)

u(x, t) = U0(x, t) + U1(x, t).

Здесь U0(x, t) есть (6), где Rλ заменено на R0
λ = (L0 − λE)−1,

L0 есть оператор L при q(x) = 0.

U0(x, t) = A0(x, t) =
1

2

(
F̃ (x+ t) + F̃ (x− t)

)
,

F̃ (x) = ϕ(x) при x ∈ [0, 1].

A0(x, t) — решение задачи (A) при qj(x) = 0, и F̃ (x) вместо ϕ(x).
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Задача (А): преобразование формального решения

U1(x, t) — решение задачи

∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
−Q(x)u(x, t) + F0(x, t), (C)

u1(0, t) = u1(1, t) = u2(0, t) = u2(1, t),

u′1x(0, t)− u′1x(1, t) + u′2x(0, t)− u′2x(1, t) = 0,

u1(x, 0) = u2(x, 0) = 0, u′1t(x, 0) = u′2t(x, 0) = 0

с F0(x, t) = −Q(x)A0(x, t).
Представим U1(x, t) в виде: U1(x, t) = A1(x, t) + U2(x, t),

A1(x, t) =
1

2

t∫

0

dτ

x+t−τ∫

x−t+τ

F̃0(η, τ) dη, F̃0(x, t) = −Q̃(x)A0(x, t)

U2(x, t) — решение задачи (C) с F1(x, t) = −Q(x)A1(x, t)
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Решение задачи (А)

Классическое решение существует и имеет вид

u(x, t) = A(x, t) =
∞∑

n=0

An(x, t),

где A0(x, t) =
1

2
[F̃ (x+ t) + F̃ (x− t)].

An(x, t) =
1

2

t∫

0

dτ

x+t−τ∫

x−t+τ

F̃n−1(η, τ) dη, n ≥ 1

и F̃n(x, t) = −Q̃(x)An(x, t)

‖An(x, t)‖C[QT ] ≤ C
Mn−1T n−1

(n− 1)!
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Обозначим через Z(x, t, ϕ) ряд (5) при ψj(x) = fj(x, t) = 0. Из
(5) получим представление:

u(x, t) = Z(x, t, ϕ) +

t∫

0

Z(x, τ, ψ) dτ +

t∫

0

dτ

t−τ∫

0

Z(x, η, f(·, τ)) dη

(в случае суммируемого потенциала такое представление было
предложено А. П. Хромовым с привлечением теории
расходящихся рядов). При этом Z(x, t, ϕ) есть решение задачи
(1)–(4) при ψ(x) = f(x, t) = 0 (задачи (А)).
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О периодических режимах колебаний

Отметим, что в задаче (А) для функции F̃ (x), построенной по
соотношениям (Π), справедливо:

Вектор-функция F̃ (x) дважды непрерывно дифференцируема на

всей оси, является периодической с периодом 2, F (x+ 2) = F (x),
причем F (x) = ϕ(x) при x ∈ [0, 1].
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Случай графа с ребрами разной длины)

∂2uj(x, t)

∂t2
=

1

d2j

∂2uj(x, t)

∂x2
− qj(x)uj(x, t) + fj(x, t);

ui(x, 0) = ϕi(x), i = 1, 2;

u′it(x, 0) = 0, i = 1, 2;

u1(0, t) = u1(1, t) = u2(0, t) = u2(1, t);

a1u
′
1x(0, t) + a2u

′
1x(1, t) + a3u

′
2x(0, t) + a2u

′
2x(1, t) = 0;

Краевые условия регулярны по Биркгофу, если

a3d2 − a4d2 + a1d1 − a2d1 6= 0,
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Случай графа с ребрами разной длины

Требования на ϕ(x) =
(
(ϕ1(x), ϕ2(x)

)T
:

1 ϕi(x) ∈ C(2)[0, 1];
2 ϕ1(0) = ϕ1(1) = ϕ2(0) = ϕ2(1)
3 a1ϕ

′
1(0) + a2ϕ

′
1(1) + a3ϕ

′
2(0) + a2ϕ

′
2(1) = 0;

4 d22ϕ
′′
1(0) = d22ϕ

′′
1(1) = d21ϕ

′′
2(0) = d21ϕ

′′
2(1).
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Задача при qj(x) ≡ 0, fj(x, t) ≡ 0

Теорема

Решение задачи при qj(x) ≡ 0, fj(x, t) ≡ 0, имеет вид:

u0
i (x, t) =

1

2

(
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причем ϕ̃i(x) = ϕi(x) при x ∈ [0, 1],
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где C = a3d2 − a4d2 + a1d1 − a2d1, и ϕ̃j(x) — дважды непрерывно
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Визуализация решений
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